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Abstract

In this paper we continue the development of a relative version of T-duality in generalized complex
geometry which we propose as a manifestation of mirror symmetry. We discuss the integrability of the
transform from Part I in terms of data on the base manifold. We work with semi-flat generalized com-
plex structures on realn-torus bundles with section over ann-dimensional base and use the transform
on vector bundles developed in Part I of this paper to discuss the bijective correspondence between
semi-flat generalized complex structures on pairs of dual torus bundles. We give interpretations of
these results in terms of relationships between the cohomology of torus bundles and their duals. We
comment on the ways in which our results generalize some well established aspects of mirror sym-
metry. Along the way, we give methods of constructing generalized complex structures on the total
spaces of the bundles we consider.
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1. Introduction

In the associated paper, Part I: The Transform on Vector Bundles, Spinors, and Branes
[1], we gave transformation rules for generalized almost complex structures on vector bun-
dles, including various assumptions and compatibility conditions. We have also commented
on the mirror transformation on spinors and branes, as well as a relationship to Dirac ge-
ometries on the base manifold. Furthermore, we have examined the geometry of a pair
of transverse foliations, and the compatibilities with generalized complex and generalized
Kähler structures. We have proposed this transformation as a very simple case of mirror
symmetry. In this paper, we continue the analysis, focusing on the integrability conditions,
and the new features that arise in the case of torus bundles. Finally, we work out some
more explicit details in certain examples. In Part I, we have included a more complete
introduction, with background material and additional references.

In this paper, we relate the integrability ofsemi-flat (seeDefinition 2.2) generalized
almost complex structures on torus and vector bundles to data which lives only on the base
manifold. We show that a semi-flat generalized almost complex structure is integrable if
and only its mirror structure is integrable.

Using a natural connection on a torus bundleZ→ M with zero sections, we will
construct semi-flat generalized complex structuresJ onZ from generalized almost complex
structuresJ on the vector bundles∗TZ/M ⊕ TM . The definition of semi-flat includes the
condition that

J(s∗TZ/M ⊕ s∗T∨Z/M) = TM ⊕ T∨M.

Then we have the following two results.

Theorem 1.1 (3.4).A semi-flat generalized almost complex structure J on a torus bundle
Z→ M with zero section s is integrable if and only if

[J(S⊕ S∨),J(S⊕ S∨)] = 0,

where S is the sheaf of flat sections of s∗TZ/M .

Corollary 1.2 (3.5).A semi-flat generalized almost complex structure J on a torus bundle
Z→ M is integrable if and only if its mirror structure Ĵ on the dual torus bundle Ẑ→ M

is integrable.

These statements set the stage for understanding mirror symmetry and the mirror trans-
form of D-branes in generalized Calabi–Yau geometry. Our results are a direct generalization
of the setup employed by Arinkin and Polishchuk[32] in ordinary mirror symmetry. Explicit
examples of this fact can be found in Section5.

We relate this transformation of geometric structures to a purely topological map on
differential forms which descends to a map from the de Rham cohomology ofZ to the de
Rham cohomology of̂Z. In particular, the map on differential forms exchanges the pure
spinors associated to the generalized complex structure onZ with the ones associated to the
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mirror generalized complex structure onẐ. This type of transformation was also discussed
in [14].

Throughout the paper we comment on how our results relate to some of the well estab-
lished results and conjectures of mirror symmetry[32,34,26,31,25]and also what they say in
regards to the new developments in generalized Kähler geometry[16] and the relationships
between generalized complex geometry and string theory[22,36,16]which have appeared
recently. As mentioned in[22] we may interpret these dualities as being a generalization
of the duality between the A- and B-model in topological string theory. In the generalized
Kähler case, they can be interpreted as dualities of supersymmetric nonlinear sigma models
[15].

1.1. Integrability

Let M be a generalized almost complex manifold. TheCourant bracket ([10], p. 645) is
defined on sections of (TM ⊕ T∨M)⊗ C by

[X+ ξ, Y + η] = [X, Y ] + LXη− LY ξ + 1

2
d(ιY ξ − ιXη),

or equivalently

[X+ ξ, Y + η] = [X, Y ] + ιX dη+ 1

2
dιXη− ιY dξ − 1

2
ιY ξ.

Definition 1.3 (cf. [16,18,19]). Let M be a real manifold equipped with a generalized
almost complex structure defined byE ⊆ (TM ⊕ T∨M)⊗ C. We say thatE is integrable if
the sheaf of sections ofE is closed under the Courant bracket. If that is the case, we also
say thatE is a generalized complex structure on M, and thatM is a generalized complex
manifold.

Remark 1.4 (cf. [10,19]). As we noted in[2], the integrability condition for a generalized
almost complex structureJ is equivalent[2] to the vanishing of theCourant–Nijenhuis
tensor:

NJ(X, Y ) = [JX,JY ] − J[JX, Y ] − J[X,JY ] − [X, Y ],

whereX,Y are sections ofTM ⊕ T∨M .
Integrability can also be expressed in terms of spinors[19,16,40]. If L ⊆ ∧• T∨M ⊗ C

is the line bundle of spinors associated to a generalized almost complex structureJ on a
manifoldM thenJ is integrable if and only if all sectionsφ of L satisfy

dφ = ιvφ + α ∧ φ

for some sectionv+ α of (TM ⊕ T∨M)⊗ C.
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Example 1.5 (cf. [19,16]). In the case that a generalized almost complex structure comes
from an almost complex structure, it will be integrable if and only if the almost complex
structure is integrable, giving a complex structure to the manifold. In the case that a general-
ized almost complex structure comes from a non-degenerate differential two-form (almost
symplectic structure), it will be integrable if and only if the form is closed, i.e. gives a
sympletic structure to the manifold.

GeneralB-field andβ-field transformations need not preserve integrability. However,
[18], a closed two-form B acts on generalized complex structures onM in the same way
as described in Part I of this paper under the section on notations, conventions, and basic
definitions[1]. In fact, aB-transform by a two-form onM is an automorphism of the Courant
bracket if and only if the two-form is closed[19]. Note further that aB-field transform of
a particular generalized complex structure can be integrable even if the two-form is not
closed. In fact, for any specific generalized complex manifold (M,J), one can write down
explicitly the conditions that need to be satisfied by a two form,B or a bi-vector fieldβ in
order for theB-field orβ-field transform of (M,J) to be integrable. We will study examples
of this phenomenon in Section5.

2. The question of integrability

The purpose of this section is to express the integrability of∇-lifted, adapted generalized
almost complex structuresJ on the total space of vector bundles in terms of data on the
base manifoldM. We do this only in the case where∇ is flat (in which case we call the
structuresJ semi-flat). Once we do this it will be clear thatJ onX = tot(V ) is integrable
if and only if the mirror structurêJ on X̂ = tot(V∨) is integrable. For all notation used in
this section, see Section 4 of Part I[1]. In particular, we shall use the maps:

J =




0 J12 0 J22

J13 0 −J∨22 0

0 J31 0 −J∨13

−J∨31 0 −J∨12 0


 , J ∈ GL(V ⊕ TM ⊕ V∨ ⊕ T∨M) (2.1)

and

Ĵ =




0 J31 0 −J∨13

−J∨22 0 J13 0

0 J12 0 J22

−J∨12 0 −J∨31 0


 , Ĵ ∈ GL(V∨ ⊕ TM ⊕ V ⊕ T∨M). (2.2)

The relationship of these maps toJ andĴ was worked out in great detail in Part I[1].
Recall that the choice of a connection∇ gives rise to a splitting (D,α):
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of the tangent sequence ofπ : X→ M, and a dual splitting of the tangent sequence of
π̂ : X̂→ M.

Now if that∇ is flat it is known[24] that we may find in a neighborhood of any point of
M a frame,{ei} such that∇ei = 0. We will call {ei} a flat frame. Given a flat frame, along
with the corresponding vertical coordinates{ξi} we have that for any choice of coordinates
xi on the base, the functionsξi together withyi = xi ◦ π form a coordinate system onX and
α(π∗∂/∂xi) = (1− j ◦D)∂/∂yi = ∂/∂yi follows from the expression in this frame (see the
analysis in Part I of this paper in Section 4[1]) for D. We define a framesfi for π∗V andf i

for π∗V∨ by using the pullbacksfi = π∗ei andf i = π∗ei, where{ei} is a dual frame to{ei}.

Remark 2.1. Notice that∇ is flat if and only if the image ofα is involute. Hence, in this
case we have a horizontal foliation instead of just a horizontal distribution. We considered
the geometry of a pair of transverse foliations and its interaction with a generalized complex
structure in Part I, Section 7.

Definition 2.2. If ∇ is aflat connection on a rankn vector bundleV over a realn-manifold
then a∇-semi-flat generalized almost complex structure onX = tot(V ) is an adapted,∇-
lifted (see Part I, Definitions 4.1 and 4.2[1]) generalized almost complex structure.

Let S be the sub-sheaf of flat sections ofV ⊕ V∨. Consider the isomorphism of vector
bundles:

M : V ⊕ V∨ → TM ⊕ T∨M,

M =
(
J13 J∨22

−J∨31 J∨12

)
, M−1 =

(−J12 −J22

−J31 J∨13

)
. (2.3)

With this notation we have the following theorem.

Theorem 2.3. If V is a vector bundle on a manifold M, then a semi-flat generalized almost
complex structure J = F−1(π∗J)F on X = tot(V ) is integrable if and only if all pairwise
Courant brackets of sections of the sheafM(S) vanish.

Notice that this condition is expressed entirely in terms of data on the base manifoldM.
Furthermore, we will see that this theorem implies the following corollary.

Corollary 2.4. The generalized almost complex structureJ = F−1(π∗J)F onX = tot(V )
is integrable if and only if the generalized almost complex structure Ĵ = F̂−1(π̂∗Ĵ)F̂ on
X̂ = tot(V∨) is integrable.

Remark 2.5. In other words the mirror symmetry transformation is a bijective correspon-
dence between∇-semi-flat generalized complex structures onX and∇∨-semi-flat general-
ized complex structures on̂X.

Example 2.6. If ∇ is any flat, torsion-free connection onTM , we can put a canonical
complex structure on tot(TM). See Section5 for more details. This construction was first
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done in[11]. It is easy to see that the mirror structure isalways the canonical symplectic
structure on tot(T∨M).

Proof of Theorem 2.3. Let us analyze the condition that the (+i) eigenbundleE be involute.
The bundleE is the graph of the isomorphism:

−iJ|image(j⊕D∨)⊗C : image(j ⊕D∨)⊗ C→ image(α⊕ dπ∨)⊗ C.

It suffices to analyze involutivity it locally on the base manifold. Note that in the local frame
and coordinates which we have chosen, we have the following formulae:

j(fi) = ∂

∂ξi
, D

(
∂

∂ξi

)
= fi, D

(
∂

∂yi

)
= 0, α

(
∂

∂xi

)
= ∂

∂yi
,

dπ

(
∂

∂yi

)
= π∗ ∂

∂xi
, dπ

(
∂

∂ξi

)
= 0, D∨(f i) = dξi,

α∨(dyi) = π∗dxi, α∨(dξi) = 0, (dπ)∨(π∗ dxi) = dyi,

j∨(dξi) = f i, j∨(dyi) = 0.

Furthermore, an isotropic sub-bundle of (TX ⊕ T∨X )⊗ C is involute if and only if it has
a basis of sections whose pairwise Courant brackets are themselves sections of the original
bundle. This follows immediately from the Leibniz property of the Courant bracket, see
e.g.[40,10]. This property says that

[v1+ α1, f (v2+ α2)] = f [v1+ α1, v2+ α2] + v1(f )(v2+ α2)

+〈v1+ α1v2+ α2df 〉 (2.4)

for all vector fieldsv1 andv2, one-formsα1 andα2 and functionsf. Let U is the coordinate
neighborhood of the base. We will analyze involutivity inπ−1(U), using the coordinate
system and frame described above. Involutivity ofE is equivalent to the condition that
[ai, aj], [ai, bj], and [bi, bj] are all sections ofE where

ai = j(fi)− iJ(j(fi))

and

bi = D∨(f i)− iJ(D∨(f i)).

Using the special form ofJ we have

ai = ∂

∂ξi
− iαπ∗(J13ei)+ i(dπ)∨π∗(J∨31ei)

and

bi = dξi + iαπ∗(J∨22e
i)+ idπ∨π∗(J∨12e

i).
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Hence, we have that

[ai, aj] =
[
∂

∂ξi
− iαπ∗(J13ei)+ i(dπ)∨π∗(J∨31ei),

∂

∂ξj

− iαπ∗(J13ej)+ i(dπ)∨π∗(J∨31ej)

]

=
[
∂

∂ξi
− iαπ∗(J13ei),

∂

∂ξj
− iαπ∗(J13ej)

]

+ ι∂/∂ξi−iαπ∗(J13ei)di(dπ)∨π∗(J∨31ej)

− ι∂/∂ξj−iαπ∗(J13ej)di(dπ)∨π∗(J∨31ei)

+ 1

2
dι∂/∂ξi−iαπ∗(J13ei)i(dπ)∨π∗(J∨31ej)

− 1

2
dι∂/∂ξj−iαπ∗(J13ej)i(dπ)∨π∗(J∨31ei)

= −[απ∗(J13ei), απ
∗(J13ej)] + ιαπ∗(J13ei)d(dπ)∨π∗(J∨31ej)

− ιαπ∗(J13ej)d(dπ)∨π∗(J∨31ei)+
1

2
dιαπ∗(J13ei)(dπ)∨π∗(J∨31ej)

− 1

2
dιαπ∗(J13ej)(dπ)∨π∗(J∨31ei)

= −α[π∗(J13ei), π
∗(J13ej)] + ιαπ∗(J13ei)(dπ)∨π∗ d(J∨31ej)

− ιαπ∗(J13ej)(dπ)∨π∗d(J∨31ei)+
1

2
dπ∗ιJ13ei (J

∨
31ej)−

1

2
dπ∗ιJ13ej (J

∨
31ei)

= −απ∗[J13ei,J13ej] + (dπ)∨π∗ιJ13ei d(J∨31ej)− (dπ)∨π∗ιJ13ej d(J∨31ei)

+ 1

2
(dπ)∨π∗ dιJ13ei (J

∨
31ej)−

1

2
(dπ)∨π∗ dιJ13ej (J

∨
31ei)

= − (α+ (dπ)∨)[(π∗J13)ei − (π∗J∨31)ei, π
∗(J13ej)− π∗(J∨31)ej]

= − (α+ (dπ)∨)π∗[J13ei − J∨31ei,J13ej − J∨31ej]

or

[ai, aj] = −(α+ (dπ)∨)π∗[J13ei − J∨31ei,J13ej − J∨31ej]. (2.5)

Similarly, we have

[ai, bj] = (α+ (dπ)∨)π∗[J13ei − J∨31ei,J
∨
22e

j + J∨12e
j] (2.6)

and

[bi, bj] = −(α+ (dπ)∨)π∗[J∨22e
i + J∨12e

i,J∨22e
j + J∨12e

j]. (2.7)

The right-hand sides of all three of these expressions are sections of the vector bundle
image(α+ (dπ)∨)⊗ C. Therefore, the right-hand sides are sections ofE and in particular
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be sections of the graph of a map of vector bundles from image(j +D∨)⊗ C to image(α+
(dπ)∨)⊗ C if and only if [ai, aj], [ai, aj], and [bi, bj] all vanish. This is precisely the
statement ofTheorem 2.3: that all pairwise Courant brackets between sections ofM(S)
vanish. �

Notice now that if we replace the vector bundleV byV∨ andJ by Ĵ (see Eqs.(2.1) and
(2.2)) thenM gets replaced by

M̂ =
(−J∨22 −J13

−J∨12 J∨31

)
, (2.8)

butM(S) = M̂(S∨). Therefore, we have also provenCorollary 2.4.
It is also clear from this proof and using Eq.(2.4), that if J is integrable, then the

two almost Dirac structures	 = J(V ) = Ĵ(V ) and	̂ = Ĵ(V∨) = J(V∨) are as well. The
vector bundle	 inherits the same flat connection fromV viaJ or Ĵ. Similarly, 	̂ inherits
the same flat connection fromJ or Ĵ.

Corollary 2.7. For a flat connection∇ on a vector bundle V over M, a∇-semi-flat general-
ized complex structure on the total space of V induces a pair of transverse Dirac structures
on M. These Dirac structures inherit flat connections.

Remark 2.8. The geometry of a pair of transversal Dirac sub-bundles was recently studied
by A. Wade and found to be equivalent to a generalized paracomplex structure as defined
in [37]. Furthermore, using the analysis of the integrability condition in terms of local
systems above, the two Dirac structures that we have identified above form apair of Dirac
structures (see e.g.[12]) in the sense of Gelfand and Dorfman and therefore leads to a
method of constructing integrable hierarchies with respect to the two Poisson structures
coming from the two Dirac structures. This remark also applies to the torus bundle case
below. Another overlap with the mathematics of integrable systems is also noted in the last
section of Part I[1] and these overlaps will be the subject of future work.

Note that ageneralized Kähler structure is defined[16] to be a generalized almost Kähler
structures where both of the two generalized almost complex structures are integrable.
Therefore, we have also proven (using the results of Part I, Section 4.2[1]) the following.

Corollary 2.9. The correspondence in Corollary 2.4, gives a bijective correspondence be-
tween∇-semi-flat generalized Kähler structures on X and∇∨-semi-flat generalized Kähler
structures on X̂.

3. From vector bundles to torus bundles

In this section, we describe generalized complex structures on (real) torus bundles with
sections and their mirrors. The base of our torus bundles will turn out to support a pair of
complimentary Dirac structures.
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3.1. The geometry of torus bundles and the dual of a torus bundle

Let Z
p→M be a fiber bundle over a real manifoldM for which the fibers have the

diffeomorphism type of a real torus of dimensionn. We call this atorus bundle. So we have
for U small in the base, local isomorphisms of fiber bundlesp−1(U) ∼= U × T . Assume
that this fiber bundle possesses a global (smooth) sections. This is equivalent to assuming
that the structure group of the bundle is Diff(T ,0) as opposed to Diff(T ). However, since
the connected component of Diff(T ,0) is contractible, the structure group of the bundle
may be reduced to those diffeomorphisms which respect the group structure: Aut(T ) ∼=
GL(n,Z). Recently this issue was discussed in[21]. We consider this to have been done
and regards as the zero section. We therefore considerX as a (Lie) group bundle or bundle
of (Lie) groups. Recall that for a bundle of Lie groups modeled on a Lie groupG (we
sometimes call this simply aG-bundle) we have local mapsρ−1(U) ∼= U ×G and the
transition mapsU ∩ V ×G ∼= U ∪ V ×G restrict to a Lie group isomorphism ofG on each
fiber.

Consider the tangent sequence:

0→ TZ/M → TZ
dp→p∗TM → 0.

As in case of vector bundles,TZ/M is a pullback. Indeed, letV = s∗TZ/M , then we have
thatTZ/M ∼= p∗V . This follows from the following simple observation.

Lemma 3.1. Let G be a Lie group and Y
p→N a G-bundle. Call the zero-section s. Then

we have ρ∗s∗TY/N ∼= TY/N .

Proof. Write any sectionσ of (s ◦ ρ)−1TY/N overU ⊆ Y asσ = σ0 ◦ s ◦ ρ whereσ0 is a
section ofTY/N overs(ρ(U)). Now using the local group structure we may pushσ0 forward
along the fibers. The transition maps respect the group structure ofG and therefore these
vector fields patch to a section ofTY/N overρ−1(ρ(U)) and then we can restrict this section
to U. This gives a morphism of vector bundles:

(s ◦ ρ)∗TY/N
ψ→ TY/N.

Over a pointy ∈ Y, when we look in one of the trivial neighborhoods,ρ−1(U) ∼= U ×G

wherey = (u, g), the map becomes just the obvious map Lie(G)→ TgG which is clearly an
isomorphism. Hence, we can conclude that the mapψ gives an isomorphismρ∗s∗TY/N ∼=
TY/N . �

Furthermore, if we use the fact that the toruscompact and connected, the sheaf of sections,
V of V = s∗TZ/M is isomorphic to (R1p∗R)∨ ⊗ C∞M .

Lemma 3.2. If Z
p→M is a T = Lie(T )/Γ bundle with structure group Aut(Γ ) then V ∼=

(R1p∗R)∨ ⊗ C∞M .

Notice that this is just a relative version of the natural isomorphism Lie(T )∨ ∼= H1(T ,R)
which is described for example in[4].
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Proof. Notice thatV = s∗TZ/M is a Lie(T )-bundle onMwith structure group Aut(Γ ). Let
Λ ⊆ tot(V ) be the lattice induced byΓ andSΛ be its sheaf of sections. There is a morphism
of presheaves of abelian groups:

SΛ→ [U �→ H1(p−1(U),Z)].

It is given (forU connected) by sendingλ ∈ SΛ(U) to the homology class of the image in
Z of the line in tot(V ) connecting the point 0 overm to the pointλ(m) for somem ∈ U. For
U small enough this is an isomorphism using the Künneth theorem:

SΛ(U) ∼= H1(p−1(U),Z) = HomZ(H1(p−1(U),Z),Z).

Hence, we have isomorphisms of sheaves:

SΛ ∼= HomZ(R1p∗Z,Z), SΛ ⊗ R ∼= (R1p∗R)∨ and

V ∼= (R1p∗R)∨ ⊗ C∞M . �

Therefore, we have a flat Gauss–Manin connection∇ on V given as the image of 1⊗ d
under this isomorphism. Recall that in the case of vector bundles we had for each flat
connection onV a (potentially) inequivalent mirror symmetry transformation. By contrast,
in the case of torus bundles, the topology of a torus bundle has given us a natural flat
connection onV and so we need not make any additional choices.

The multisection ofV given byΛ = tot(SΛ) acts onX = tot(V ) and the orbits are the
fibers of the natural map fromX toZ. Hence, we have a diffeomorphismX/Λ ∼= Z. Under
this quotient, the multisection goes tos(M). The sheaf of sections ofZ becomes the sheaf
of groupsV/SΛ ∼= ((R1p∗R)∨ ⊗ C∞M )/(R1p∗Z)∨ where the zero section has images(M).
The isomorphismX/Λ ∼= Z is an isomorphism ofGL(n,Z) fiber bundles overM.

Now thedual torus bundle is defined to bêZ = X̂/Λ̂ p̂→M whereΛ̂ = tot(SΛ∨ ) and
SΛ∨ = HomZ(SΛ,Z) ⊆ V∨. Furthermore,SΛ∨ ∼= R1p̂∗Z andV∨ ∼= R1p̂∗R⊗ C∞M . This
gives a flat connection onV∨which is of course just the dual connection∇∨. AlsoSΛ∨ ⊗Z R
is the sheaf of flat sections ofV∨ with respect to∇∨. The sheaf of sections ofẐ overM is a
sheaf of groups given byV∨/SΛ∨ ∼= (((R1p̂∗R))⊗ C∞M )/(R1p̂∗Z). We then have a global
sectionŝ of Ẑ overM which is the zero section and satisfies thatŝ(M) is the image of the
multisectionΛ̂ under the quotient map.

We saw in Part I, Section 4[1] that if we letX = tot(V ), then∇ gives us a splittingD of
the tangent sequence of the mapX

π→M. We can use this to split the tangent sequence of

the mapZ
p→M. Consider the following diagram where we have decomposedπ asp ◦ q.

We may push forward the exact sequence:

0→ π∗V → TX
dπ→π∗TM → 0,
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which is split byπ∗(V )
D← TX to the exact sequence:

0→ q∗π∗V → q∗TX
q∗dπ→ q∗π∗TM → 0,

which is split byq∗π∗(V )←q∗D q∗TX. Furthermore,Λ naturally acts on all three of these
sheaves and if we take theΛ invariants of each term of this sequence we recover precisely
the exact sequence that we want to split, namely

0→ p∗V → TZ
dp→p∗TM → 0.

Therefore, the only thing to check in order to split this sequence is that the mapD
satisfies (dtλ)(Dw) = D((dtλ)(w)) where for some smallU ⊆ M and smallU ′ ⊆ p−1(U)
w is a section ofTX overq−1(U ′), λ is a component ofΛ ∩ π−1(U) andtλ : X→ X is the
action of addition ofλ. However,

(dtλ)(Dw) = (dtλ)(((π
∗∇)S)w) = ((π∗∇)(S + λ))((dtλ)w)

= ((π∗∇)S)((dtλ)w) = D((dtλ)w),

due to the fact that that the sections of the lattice are flat.

3.2. Generalized complex structures on torus bundles and the mirror transformation

We will now use the same names as in the vector bundles case for the splittings of the
tangent sequences ofZ andẐ. That is:

and

Since we will be using only one connection in the case of torus bundles, we will drop∇
from the notation.

Definition 3.3. If M is ann-dimensional real manifold andZ→ M is a real torus bundle
with fiber dimensionn and zero sections then we call a generalized almost complex structure
J onZwhich comes from (see Part I, Section 4[1]) an adapted generalized almost complex
structureJ on s∗TZ/M ⊕ TM = V ⊕ TM a semi-flat generalized almost complex structure.

Recall that “adapted” just means that

J(s∗TZ/M ⊕ s∗T∨Z/M) = TM ⊕ T∨M.

As in the vector bundle case, there is a bijective correspondence between semi-flat
generalized almost complex structures onZ andẐ. The proof is precisely the same, except
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the choice of local coordinates is local along the base and the fiber, instead of just along the
base.

Theorem 3.4. A semi-flat generalized almost complex structureJon a torus bundleZ→ M

with zero section s is integrable if and only if

[J(S⊕ S∨),J(S⊕ S∨)] = 0,

where S is the sheaf of flat sections of s∗TZ/M .

Corollary 3.5. A semi-flat generalized almost complex structure J on a torus bundle
Z→ M is integrable if and only if its mirror structure Ĵ on the dual torus bundle Ẑ→ M

is integrable.

Remark 3.6. This means that we have given a bijective correspondence between semi-flat
generalized complex structures onZ and semi-flat generalized complex structures onẐ.
The same holds true for generalized Kähler structures in which both of the generalized
complex structures are semi-flat.

Corollary 3.7. A semi-flat generalized almost complex structure J on a torus bundle
Z→ M induces a pair of almost Dirac structures:

	 = J(s∗TZ/M), 	̂ = J(s∗T∨Z/M) ⊆ TM ⊕ T∨M.

Each carries its own flat connection and these Dirac structures are exchanged under mirror
symmetry. If J is integrable then 	 and 	̂ are integrable.

Now in the case when the generalized complex structure on the torus bundle is of sym-
plectic type and the torus fibers are Lagrangian this result reproduces the starting point of
the work[32] where the torus bundle is written as tot(T∨M)/Λ and	 is the Dirac structure
T∨M , which inherits a flat connection∇. The mirror manifold tot(TM)/Λ∨ inherits a complex
structure as explained in[32] constructed using the dual connection∇∨ which is both flat
and torsion-free. This corresponds to the canonical almost complex structure on tot(TM)
associated to a connection onTM which is known[11] to be integrable if and only if the
connection is flat and torsion-free.

4. The cohomology of torus bundles

Consider the diagram:
Now the spaceZ ×M Ẑ is endowed with a global closed two form given as� = 1

2πiFwhere
F is the curvature of a connection on the relative Poincaré (line) bundle. See[31] for an
explanation of the relative Poincaré bundle in this context. Now we would like to introduce
a relative version of a map given[30] in the context of mirror symmetry of abelian varieties
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as introduced by Mukai[29]. This idea has appeared in various ways in[14,36,16,28]and
the references therein.

Lemma 4.1. If the bundle q̂∗TZ/M is orientable then we have a morphism (independent of
the choice of orientation) of sheaves of C∞M modules p∗Ω•Z → p̂∗Ω•Ẑ is a morphism of the
de Rham complexes. Therefore, this morphism gives a map of presheaves:

[U �→ H•(p−1(U),R)] → [U �→ H•(p̂−1(U),R)].

This map of presheaves induces an isomorphism of the sheafifications R•p∗R→ R•p̂∗R
which decomposes into isomorphisms Rjp∗R→ Rn−jp̂∗R for j = 1, . . . , n.

Proof. We have a map ˆq� = (dq̂)∨ ◦ q̂∗ fromp∗Ω
j
Z top∗q̂∗Ω

j

Z×MẐ given by pulling back

differential forms. Clearly, ˆq� commutes with the de Rham differentials. Observe that the
mapq makesZ ×M Ẑ into a torus bundle over̂Z. The relative tangent bundle of the tangent
sequence of the mapq is isomorphic to ˆq∗TZ/M . Therefore, we also have a mapq∗ which
integrates along the fibers and mapsq∗ΩkZ×MẐ toΩk−n

Ẑ
. Explicitly, if we take our global

sections overZ ×M Ẑ of ∧nq̂∗TZ/M and the corresponding global sectiont of ∧nq̂∗T∨Z/M
thenq∗(Υ ) = ∫(Z×MẐ)/Z((ιsΥ ) ∧ t). This does not depend on the choice ofs but we do need
the fibers ofq to be orientable manifolds to integrate over them. Since the torus fibers of ˆq are
manifolds without boundary we have thatq∗ and also its push-forward, ˆp∗[q∗] commutes
with the de Rham differentials. Now we can define the mapF.T. : p∗Ω•Z → p̂∗Ω•Ẑ by

F.T.(µ) = p̂∗[q∗](q̂�(µ) ∧ exp(�)).

Now since d� = 0 we haveF.T.(dµ) = dF.T.(µ) and hence we get a map of presheaves
[U �→ H•(p−1(U),R)] → [U �→ H•(p̂−1(U),R)]. In particular we have a naturalR-linear
mapH•(Z,R)→ H•(Ẑ,R). In order to write the map on differential forms locally on the
base, chose a trivializing open neighborhoodU ⊆ M andµ ∈ Ωc(p−1(U)). Then letξi
be the flat vertical coordinates onp−1(U) andηi be the dual flat vertical coordinates on
p̂−1(U). In these coordinates we may assume without loss of generality that

s = ∂

∂ξn
∧ · · · ∧ ∂

∂ξ1

onp−1(U). (Every section may be extended to a global section.)
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Let us now expressµ in local coordinates:

µ =
∑

|J |=1,...,c

fJΘJ ∧ dξj1 ∧ · · · ∧ dξjb .

Here, theΘJ are pullbacks of (c − b)—forms from the base,J = (j1, . . . , jb) wherej1 <
· · · < jb andfJ are functions onp−1(U). A simple calculation shows that

µ̂ = F.T.(µ) =
∫

T

µ ∧ exp(dξi ∧ dηi)

is given by

µ̂ =
∑

|J |=1,...,c

(−1)k1+···+kn−bθJ ∧ dηk1 ∧ · · · ∧ dηkn−b

∫
T

fJdξ1 ∧ · · · ∧ dξn,

where k1 < · · · < kn−b is the compliment toJ. Now suppose thatµ is closed and
that we consider the cohomology class [µ] ∈ Hj(p−1(U),R), Using the K̈unneth isomor-
phism:

Hc(p−1(U),R) ∼=
⊕

b=0,...,c

Hc−b(U,R)⊗Hb(T ,R) ∼= Hc(T ,R),

we may absorb thefJ into theΘJ in the above expression and therefore since the cohomol-
ogy of the toriT andT∨ are generated by the classes [dξ1 ∧ · · · ∧ dξj] and [dη1 ∧ · · · ∧ dηk],
respectively, we conclude that the mapF.T. induces isomorphismsRjp∗R→ Rn−jp̂∗R
for j = 1, . . . , n as promised. �

Corollary 4.2. If J is a semi-flat generalized almost complex structure on a n-torus bundle
with sectionZ on an n-manifold M with associated spinor line bundleL ⊆ ∧•T∨Z ⊗ C, and
L̂ is the line bundle associated to the mirror structure Ĵ on Ẑ, then

F.T.(p∗L) = p̂∗L̂ ⊆ p̂∗ ∧ T∨Ẑ ⊗ C.

Proof. This follows from tensoring the previous lemma withC and using Lemma 6.2 of
Part I[1]. �

Remark 4.3. The Fourier–Mukai transformation for spinors, combined with the
formulae given in Lemma 6.2 of Part I[1] can easily be used to show again that
integrability, phrased in terms of spinors, is preserved by the mirror transformation we
have described. As we have already shown this, we do not demonstrate it again with
spinors.
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Example 4.4. LetM = S1 orR,Z = V/Λ×M, Ẑ = V∨/Λ∨ ×M, whereV/Λ ∼= S1. Let
x, θ, θ̂ be “coordinates” onM, V/Λ andV∨/Λ∨, respectively. Then forf a complex valued
smooth nowhere vanishing function onM:

F.T.(ef dθ∧dx) =
∫
V/Λ

ef dθ∧dx+dθ∧dθ̂ =
∫
V/Λ

dθ ∧ (f dx+ dθ̂) = dθ̂ + f dx.

When we takef = i, we see the spinor corresponding to a symplectic structure going to
one representing a complex structure.

Remark 4.5. Let Z an n-torus bundle over a compact connectedn-manifold such that
q̂∗TZ/M is orientable. Consider the “Moduli-space”SFGCY (Z) of semi-flat generalized
Calabi–Yau structures. These are semi-flat generalized complex structures which aregen-
eralized Calabi–Yau [18], meaning that the associated spinor line bundlesL have nowhere
vanishing, closed, global sections.

Since these sections are known[9,16,18] to be either even or odd we may con-
sider a “period map”[19,20] from this space intoP(Heven(Z,C))

∐
P(Hodd(Z,C)). Note

that we are assuming here that for a fixed structure, different closed, nowhere van-
ishing global sections ofL define the same cohomology class up to multiplication by
constants. Under this assumption, we have shown the existence of a commutative dia-
gram:

SFGCY (Z) → P(Heven(Z,C))
∐
P(Hodd(Z,C))

|↓ |↓
SFGCY (Ẑ) → P(Heven(Ẑ,C))

∐
P(Hodd(Ẑ,C))

.

In the case that the torus bundles areZ andẐ trivial, the vertical map takes horizontalith
cohomology to itself and verticalith cohomology to vertical (n− i)th cohomology (both
with multiplication by signs).

Conjecture 4.6. Let (Z,J) be a compact generalized Calabi–Yau manifold of (real) di-
mension 2n. As we have mentioned in the previous remark, it would be desirable to know
that there is a unique element in P(H•(Z,C)) associated with Z. Without this knowledge,
the previous diagram would have to be modified by the appropriate restrictions on the
left-hand side. Therefore, we conjecture that if φ is a global, closed, nowhere vanishing
differential form, representing J, and f is a nowhere zero smooth complex valued function
such that d(fφ) = 0, that f is constant. If we call generalized Calabi–Yau manifolds satisfy-
ing this condition Liouville then it is easy to see that all symplectic manifolds are Liouville
(take φ = e−iω), compact Calabi–Yau manifolds are Liouville (take φ to be a nowhere zero
holomorphic n-form), and products and B-field transformations of Liouville generalized
Calabi–Yau manifolds are Liouville.
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5. Examples

5.1. Mirror images of B-field and β-field transforms

Let V be a vector bundle onM with connection∇, X = tot(V ) andJ = F−1(π∗J)F
a generalized almost complex structure onX, whereF is defined in Part I Section 4[1].
We will need to relateB-field andβ-field transforms of generalized complex structuresJ
on X to transformations of their mirror generalized complex structuresĴ = F̂−1(π̂∗Ĵ)F̂
on X̂.

The transformationJ→ exp(B)Jexp(−B), where

exp(B) =




1 0 0 0

0 1 0 0

B31 B32 1 0

B33 B34 0 1


 , exp(B) ∈ GL(V ⊕ TM ⊕ V∨ ⊕ T∨M) (5.1)

corresponds under mirror symmetry to the transformationĴ→ exp(B̂)Ĵexp(−B̂), where

exp(B̂) =




1 B32 B31 0

0 1 0 0

0 0 1 0

0 B34 B33 1


 , exp(B̂) ∈ GL(V∨ ⊕ TM ⊕ V ⊕ T∨M). (5.2)

Similarly, the transformationJ→ exp(β)Jexp(−β), where

exp(β) =




1 0 β21 β22

0 1 β23 β24

0 0 1 0

0 0 0 1


 , exp(β) ∈ GL(V ⊕ TM ⊕ V∨ ⊕ T∨M), (5.3)

corresponds under mirror symmetry to the transformationĴ→ exp(̂β)Ĵexp(−β̂), where

exp(̂β) =




1 0 0 0

β23 1 0 β24

β21 0 1 β22

0 0 0 1


 , exp(̂β) ∈ GL(V∨ ⊕ TM ⊕ V ⊕ T∨M). (5.4)

5.2. B-complex structures on X = tot(TM) and their mirror images

Let us examine a very simple “deformation” of the setup from[32]. It should be clear
that there are many variants of this that one could easily do instead. For instance one could
vary the complex structure constructed onTM from a fixed choice of connection. LetM be
any manifold and∇ a flat and torsion-free connection onTM (one may drop the torsion free
condition, but then the analysis would become more complicated). LetX = tot(TM), and
X̂ = tot(T∨M). We will investigateB-field transforms of the canonical complex structure on
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X, whereB is an arbitrary real two-form. We will give the condition for these transforms
to be (integrable)∇-semi-flat (seeDefinition 2.2) generalized complex structures onX and
give their integrable mirror structures onX̂.

That is to say, consider a generalized almost complex structure onX of the form. The
B-field transform of the canonical complex structure isJ = F−1(π∗J)F where

J =




0 1 0 0

−1 0 0 0

−B32− B33 B31− B34 0 1

B31− B34 B32+ B33 −1 0


 (5.5)

andB31 andB34 represent arbitrary two forms onM, B31 = −B∨31 andB34 = −B∨34. For
this to be semi-flat, we need it to be adapted (to the splitting, Definition 4.2 in Part I[1])
and henceB32+ B33 = 0. Therefore, we consider

J =




0 1 0 0

−1 0 0 0

0 B31− B34 0 1

B31− B34 0 −1 0


 . (5.6)

Now the analysis in Section2 tells us precisely when the generalized almost complex
structureJ is integrable. Namely, we must have that all Courant brackets of sections in the
image of the subsheafS of flat sections ofTM ⊕ T∨M under

M =
(

−1 0

B31− B34 1

)
(5.7)

must vanish. This, in turn, is equivalent to the following three Courant brackets vanishing
for any choice of flat sectionsX, Y of TM , and flat sectionsξ, η of T∨M :

[−X+ (B31− B34)X,−Y + (B31− B34)Y ] = 0,

[−X+ (B31− B34)X, η] = 0, [ξ, η] = 0.

Notice that whenB = 0, we recover no further conditions as expected. The second and
third conditions are clearly vacuous. SetB′ = B31− B34. The first condition then reads:

ι−X d(B′Y )− ι−Y d(B′X)− 1

2
d(ι−Y (B′X)− ι−X(B′Y )) = 0

or

0 = − ιX dιYB′ − ιY dιXB′ + d(ιY ιXB′)

= − ιX(LY − ιYd)B′ + ιY (LX − ιXd)B′ + (LY − ιYd)ιXB′

= − ι[X,Y ]B
′ + 2ιXιY dB′ + LY ιXB′ − ιYLXB′ − ιY ιX dB′ = 3ιXιY dB′.
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Thus,J is integrable if and only ifB′ = B31− B34 is closed. The mirror structure on̂X is
given byĴ = F̂−1(π̂∗Ĵ)F̂ where

Ĵ =




0 B31− B34 0 1

0 0 −1 0

0 1 0 0

−1 0 B31− B34 0


 . (5.8)

This is theβ-field transform of the canonical symplectic structure onX̂, where

β = ( ĵ α̂
)(0 π̂∗(B31− B34)

0 0

)(
ĵ∨

α̂∨

)
= ĵπ̂∗(B31− B34)α̂

∨.

5.3. B-symplectic structures on X̂ = tot(TM∨) and their mirror transforms

Let ∇∨ be the dual of a flat, torsion-free connection∇ on TM . In this section we will
compute the conditions for aB-field transform of the canonical symplectic structure onX̂

to be a∇∨-semi-flat generalized complex structure and find the (integrable) mirror image
structure onX.

This B-symplectic generalized almost complex structureĴ = F̂−1ĴF̂ on X̂ is given by

Ĵ =




−B33 −B34 0 1

B31 B32 −1 0

B32B31+ B31B33 1+ (B32)2− B31B34 −B33B31

−1+ B34B31− (B33)2 B34B32− B33B34 −B34 B33


 . (5.9)

Theadapted requirement (see Definition 4.2 in Part I[1]) forcesB32 = B33 = 0 and so

Ĵ =




0 −B34 0 1

B31 0 −1 0

0 1− B31B34 0 B31

−1+ B34B31 0 −B34 0


 . (5.10)

Now using the above analysis on integrability we know that this the generalized almost
complex structure on̂X will be integrable if and only if all Courant brackets of sections in
the image of the subsheafS of flat sections ofTM ⊕ T∨M under

M =
(
−1 −B31

−B34 1− B34B31

)
(5.11)

must vanish. This, in turn, is equivalent to the following three Courant brackets vanishing
for any choice ofX, Y flat sections ofTM , andξ, η flat sections ofT∨M :

[−X− B34X,−Y − B34Y ] = 0, [−X− B34X,−B31η+ η− B34B31η] = 0,

[−B31ξ + ξ − B34B31ξ,−B31η+ η− B34B31η] = 0.
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As in the previous subsection, the first equation is equivalent to dB34 = 0. The second
equation is equivalent to

[X,B31η] = 0,

ιX dιB31ηB34− ιB31η dιXB34− 1

2
d(ιB31ηιXB34− ιX(B34B31η)) = 0.

The first of these equations simply says thatB31 is a flat bivector field. On the other
hand, we claim that if dB34 = 0 andB31 is a flat bivector field then the second part of the
second equation and also the third equation are also satisfied, and hence all the equations
are satisfied. Indeed, we have

dη = dξ = d(ιB31ξη) = d(ιB31ηξ) = 0.

Therefore, the third equation gives

ιB31ξ dιB31ηB34− ιB31η dιB31ξB34+ 1

2
(dιB31ξιB31ηB34− dιB31ηιB31ξB34)

= ιB31ξLB31ηB34− ιB31ηLB31ξB34+ dιB31ξιB31ηB34

= ιB31ξLB31ηB34− ιB31ηLB31ξB34− ιB31ξ dιB31ηB34+ LB31ξιB31ηB34

= ι[B31ξ,B31η]B34+ ιB31ξLB31ηB34− ιB31ξ dιB31ηB34

= ιB31ξLB31ηB34− ιB31ξ dιB31ηB34 = ιB31ξLB31ηB34− ιB31ξLB31ηB34 = 0.

Similarly, the second part of the second equation gives

ιX dιB31ηB34− ιB31η dιXB34− 1

2
d(ιB31ηιXB34− ιXιB31ηB34)

= ιXLB31ηB34− ιB31ηLXB34− LB31ηιXB34+ ιB31η dιXB34

= ι[X,B31η]B34− ιB31ηιX dB34 = 0.

The mirror structureJ to Ĵ is thus given by

J =




0 1− B31B34 0 B31

−1 0 B31 0

0 −B34 0 1

−B34 0 −1+ B34B31 0


 . (5.12)

Therefore, the mirrorJ of Ĵ is the canonical complex structure transformed by the compo-
sition of theB-field:

(dπ)∨(π∗B34)(dπ)

and theβ-field:

j(π∗B31)j
∨.
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